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I. INTRODUCTION 

A NUMBER of recent detailed and careful investi
gations1"10 of the magnetic hyperfine interaction 

in atoms and paramagnetic ions have clearly demon
strated the important role of exchange polarization of 
the core electrons in contributing to the magnetic 
hyperfine interaction constant. In all these investi
gations, the method that has been employed has come 
to be known generally as the unrestricted Hartree-Fock 
(UHF) method. In keeping with the recent attempt of 
standardization of nomenclature,11 we shall call the 
unrestricted Hartree-Fock method the spin polarized 
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method (SP). Similarly, the projected unrestricted 
Hartree-Fock method will be denoted as the projected 
spin polarized method (PSP).12 Some of the investi-
gators2-4'6'9 have handled the SP method self-con-
sistently, while others have used a perturbation 
approach. To avoid confusion we shall refer to the 
method of treating the exchange potential as a per
turbation, the exchange perturbation method (EP). 
In recent papers, Nesbet,7 Marshall,8 and Heine13 have 
discussed possible errors that can occur in the results 
of calculation by the SP method, because the many-
electron wave function used in the SP method is not an 
eigenfunction of S2, where S is the total spin of the 
atom. From the investigations of these authors, one 
arrives at the conclusion, that for paramagnetic ions 
and atoms, this limitation of the SP method is not a 
serious source of error; but in extending the SP method 
to metals and molecules, one has to be more careful 
about the influence of this source of error. 

In this paper we are interested in a perturbation 
method which has the advantage of flexibility over the 
EP method while not sacrificing accuracy. The accuracy 

12 The PSP method should be distinguished from the SPP 
method. In the SPP method one applies the projection operator 
after an SP calculation is performed to obtain an eigenfunction 
of S2. 

13 V. Heine (to be published). 
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A convenient method is devised for the calculation of magnetic hyperfine constants in atoms, molecules, 
and metals taking into consideration the exchange interaction between the core electrons and the unpaired 
valence electrons. In this method, the core-electron wave functions are perturbed by the nuclear mag
netic moment via the Fermi contact term, and the energy of the system is then calculated in the Hartree-
Fock approximation using the perturbed core wave functions. The present method is closely related to the 
exchange perturbation method of Cohen, Goodings, and Heine. However, the former has the advantage of 
being more flexible in the sense that the same perturbed core-electron functions may be used for the ground 
and excited states of the atom and for metals without significant error. For lithium atom ls22s and ls22p 
states, we obtained values for the core contribution to the hyperfine constant a (in al* S) of 83.76 Mc/sec 
and —8.9 Mc/sec in good agreement with the earlier values of Cohen, Goodings, and Heine. We have 
applied this method to a calculation of the core-polarization correction to the Knight shift in lithium metal 
using recent wave functions of Kohn and Callaway. The core-polarization corrections produced by the s 
and p parts of the conduction-electron wave function are nearly equal but opposite in sign, while that pro
duced by the d part is an order of magnitude smaller. This results in a net correction of about — 5.3% of the 
direct contribution to the Knight shift from the conduction electrons. 
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of the method can be easily compared with other 
perturbation calculations, which we shall show to be 
exactly equivalent in principle to our method. Specifi
cally, what one does is to perturb the core electrons 
with the nuclear magnetic moment (#) via the Fermi 
contact interaction; and with these perturbed functions, 
one then computes the energy to first order in y, which 
is directly related to the hyperfine coupling constant. 
This method, which we shall call the moment per
turbation method (MP), differs from the EP approach 
only in the order of application of the perturbations, 
since there the core electrons are perturbed by the 
exchange potential rather than the nuclear magnetic 
moment. The flexibility of the method arises by letting 
the nucleus perturb the core functions and approxi
mating (which we demonstrate by our lithium atom 
calculations to be a good approximation) these per
turbed functions as being independent of the configu
ration of the outer valence electrons. Thus, we assume 
that the interaction between the magnetic moment of 
the nucleus and the core electrons of the atom is not 
greatly altered when one goes from the atomic ground 
state to an excited state, or to molecular and metallic 
states. This has the advantage of enabling one to 
calculate exchange-polarization effects when the system 
is in a variety of environments without having to solve 
separate differential equations in each case. In order to 
demonstrate the practicality and flexibility of the MP 
method, we have calculated the hyperfine interaction 
constants for atomic lithium in the ls22s and ls^lp 
configurations, and compared them with the results 
of earlier calculations. We then apply the MP method 
to calculate the contribution of exchange polarization 
to Knight shift in metallic lithium. In all these calcu
lations, the perturbed core wave functions used were 
those calculated for atomic lithium \s22p configuration. 
This procedure14 is analogous to similar cross pertur
bation methods that have been used for the quadrupole 
antishielding factors for ions,15 and for the calculation 
of nuclear magnetic shielding coefficients in molecules.16 

In Sec. II we describe the details of our method and 
its correspondence with the EP method. In Sec. I l l the 
method is applied to lithium atom 1̂ 22̂  and ls22p 
states, and the results are compared with earlier EP 
calculations. In Sec. IV we calculate the core-polari
zation correction to the Knight shift in lithium metal 
using the recent Wigner-Seitz wave functions obtained 
by Kohn and Callaway.17 In Sec. V we shall discuss the 

14 While this work was in progress, we received a preprint of a 
paper by Heine (Ref. 13) in which he mentioned that E. Simanek 
had independently proposed a similar method to Heine to avoid 
some of the inaccuracies of the SP method that were discussed in 
Ref. 13. 

15 R. M. Sternheimer, Phys. Rev. 84, 244 (1951); R. M. Stern-
heimer and H. M. Foley, ibid. 102, 731 (1956); T. P. Das and R. 
Bersohn, ibid. 102, 733 (1956). 

16 T. P. Das and R. Bersohn, Phys. Rev. 115, 897 (1959). 
17 W. Kohn and J. Callaway, Phys. Rev. 127, 1913 (1962). 

limitations of the MP method and the problem of self-
consistency. 

THEORY OF THE MP METHOD 

The general procedure followed here is similar to that 
employed in some other perturbation problems. How
ever, for the sake of completeness, we have presented 
here an adaptation pertinent to our problem at hand. 
Let us consider a general system whose unperturbed 
Hamiltonian is 3Co and whose ground-state wave 
function is SEv 

5C0^o=-Eo^o. (1) 

Let the system be perturbed by two general first-order 
perturbing forces described by Hamiltonians 3C# and 
3CJV. If 8&B and 8&N represent the first-order changes in 
the wave function of the system due to 3CE and 3GJV, 
respectively, then the energy of the system correct to 
the second order is 

E= . 
(VQ+5* E+MN l^o+d* E+WN) 

(2) 

On simplication, after making a binomial expansion 
of the denomintaor, one gets 

E={Eo+Ee+EN+2(y0\WE\8*E)+2(*0\WN\d*E) 
+ 2<^o|«5«|^j^>+2<*o|^^|Wy>+<«^*|5e|«*ji> 
+(8*N\W\8*N)+2(5*E\WO\WN)} 

-{(WB\WB)-(WN\WN)-2(WB\WN)}. (3) 

After omitting terms higher than second order, Eq. (3) 
becomes 

E= Eo+Ee+EN+(^N 13Co- E0| 8*N) 
+(WB\WO-EQ\WB)+2{WB\WO-EO\WN) 

+2(V0\KB\WB)+2(*O\WN\8*B) 

+2(*O\XB\WN)+2(¥O\XN\WN), (4) 

where we have assumed that the perturbed wave func
tion is normalized to first order. That is, 

<¥o|8¥*>=<¥ol«**>=0, (5) 

and the first-order changes in energy are given by 

Ea=<¥o|rc*[*o>, 

E*=<tfo|3e*|¥o>. 

The second-order change in energy is given by 

EM = 2(*O\WB\WB)MWB\WO--EO\WB) 

+2(Vo\WN\8*N)+(8yN\Wo-Eo\8*N) 
+2{%\XB\Wv)+2(¥i>\Kir\WB) 

+2<5¥* 13C0-Eo !«**>. (7) 
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The terms in the second-order change in energy can be 
regrouped18 as 

EeW = 2(*o\WE\d*E)+(ME\Wo-Eo\5*E), 

ENW = 2(*0\WN\8*N)+(8*N\W0-Eo\8*N), 

EeN& = 2(^o 13ZEI fitftf>+2<¥o IWN | 8*E) (8) 
+2(8*E\W0-E0\8*N). 

The quantity Ee
(2) is the second-order change in energy 

due to 30,E alone; E^(2) is the second-order change in 
energy due to W^ alone; and EeN

(2) is the second-order 
change in energy due to the interaction of WE and W^. 

The first-order equations for 8&E and 8^x are 

(3C0-.Eo)fi¥*= ~ (WE-Ee)*0, (9) 

(Wo~-Eo)8*N=-(WN-EN)*Q, (10) 

which may also be derived by minimizing Ee
(2) and 

Eiv(2) with respect to 8^TE and 5 ^ , respectively. From 
Eqs. (9) and (10) it is easily seen that 

(8*N | WE I ¥p> = (8*E 15Civ | ^o) 
= -(8*E\WO-EO\8*N). (11) 

Hence, using Eq. (11), EeN
{2) reduces to 

EeNW = 2(8*E\WN\*0), (12) 

£ ^ W = 2(W^|3ejfI^0>. (13) 

One could now apply this result to our problem of 
core polarization. For the perturbing Hamiltonian WE, 
we take the exchange potential at the position of the 
core electron due to the unpaired valence electron and 
for JCjy, the Fermi contact interaction due to the nuclear 
magnetic moment. 

^vai(l) f e2 

WE= / ^val(2)—xlsCOre(2)dT2 , (14) 

16TT 

WN = —yeyNh2hS8(r). (15) 
3 

In Eq. (15), ye is the magnetogyric ratio (e/2 Mc/sec) of 
the electron, y^ is the magnetogyric ratio of the nucleus, 
and I and S are the respective spins of the nucleus and 
electron. Equation (14) requires some explanation5: 

In the presence of an unpaired valence electron, with 
spin "up ," Eq. (14) represents the difference in exchange 
potential seen by the up and down core electrons. If the 
restricted Hartree-Fock Hamiltonian for the core states 
were used as 5C0 in Eq. (9), we should consider two 
first-order equations of the type of Eq. (9), one for the 
up core state and one for the down. The equation for 
the up state would involve +WE/2 on the right and 
that for the down state —WE/2. For those effects which 
involve WE to first order, one can consider the down 

18 T. P. Das and A. Mukherjee, J. Chem. Phys. 33, 1808 (1960). 

state to remain unperturbed and the up state to be 
perturbed by WE as given in Eq. (14). 

Besides EeN^2\ the various higher order terms that 
could contribute to the hyperfine interaction are 
WE2WN) WE

ZWNI WE
AWNI • • •. These terms are expected 

to be negligible in heavy atoms where WE is a small 
perturbation compared to W$. For light atoms there 
may be a non-negligible contribution from such terms. 
We have not investigated its effect in lithium atom 
since our major interest is in Knight shift calculations. 
I t will be shown in Sec. IV that these higher order terms 
in WE do not have to be considered in core-polarization 
contributions to Knight shift. Higher order terms like 
WN2WE> W^WE, - • •, lead to terms in the energy non
linear in nuclear spin and are of no interest to us. 

For metal \f/vai becomes ^COnd, the wave function for 
a conduction electron which extends over the entire 
crystal and therefore, involves more than one center. 
The perturbation equation for 8&E [Eq. (9)] cannot, 
therefore, be separated into radial and angular parts. 
Cohen, Goodings, and Heine5 attempted to meet this 
limitation by expressing \f/COnd around the nucleus in 
question as a linear combination of spherical harmonics 
and used the linear independence of spherical harmonics 
of different orders to separate Eq. (9) into a number of 
independent differential equations. This procedure is 
rather cumbersome because one now has to solve a set 
of differential equations in place of Eq. (9). In the M P 
procedure, one considers the perturbations in the reverse 
order. This is justified because of the two alternative 
expressions (12) and (13) for J5e^ (2). Instead of first 
considering the perturbation 8&E due to WE, let us 
consider the perturbation of the wave function 8ty& 
due to Wiv. Thus, we can determine 8^^ by solving 
Eq. (10) and obtain EeN™ from Eq. (13). Since WN 

is a localized perturbation by a point source and \f/o 
refers to ^core (the wave function of the core electrons) 
which is, to a very good approximation, localized and 
centrosymmetric, Eq. (10) can be separated into radial 
and angular parts. I t should be noted that when the 
wave function for the conduction electron is expanded 
as a sum of spherical harmonics, the M P method 
obviates the necessity of having to solve a set of 
differential equations; but instead, one has to evaluate 
a set of integrals arising out of Eq. (13). In principle, 
the two procedures for calculating EeN

(2) should lead 
to identical results; but in practice, this will not be 
exactly true. In the process of obtaining numerical 
solutions of the differential Eqs. (9) and (10), one 
weights various regions of space differently because of 
the different natures of the two perturbations WE and 
3CJV. This point will become clear in Sec. I l l , where we 
compare our results with those of Cohen, Goodings, 
and Heine's E P calculations on lithium atom. We shall 
also show in Sec. I l l that for a model, where analytic 
solutions are obtainable with both E P and M P methods, 
the two methods do, in fact, lead to identical results. 
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With these general remarks, we now proceed to the 
detailed forms of the equations that one has to solve 
for the M P method. Since, in a general case, one may 
have more than one core state to perturb, a formulation 
such as Dalgarno's for the perturbation of many-
electron systems19 is helpful. We will follow Dalgarno's 
method I I (i.e., non-self-consistent perturbation) and 
obtain the first-order perturbation equations for dxf/^ 
by minimizing the second-order energy [Eq. (59) in 
Dalgarno's paper] with respect to 8\//N. 

The first-order perturbation equations are then given 
by 

(3Ct-— €i)8\f/iiN—Y,j (ej— €*X^y18\f/ilN)\{/j 

= - W H - Z y <*/|3C* |fc>*/, (16) 

where 3C; is the one-electron Hamiltonian, and \pi, \pj 
are the one-electron wave functions in the Hartree-
Fock approximation, and et- and ej are the corre
sponding eigenvalues. The first-order change in the 
wave function for the ith one-electron state due to 
3Civ is & -̂,jv. For a core ns state, Eq. (16) for 5\f/nSiN 
takes the form 

(3Cns_ Cns)84/ns,N=lL, Ken' S— €ns)\l/v s\ fyns .JV/^tt' s 
n' s 

- 3 c w * « , + £ < * B , . | 3 e * | * » . ) 1 j v . . (17) 
n's 

One has to solve Eq. (17) for all occupied core ns states, 
since the s states are the only ones which do not have 
nodes at the origin and, hence, can contribute to the 
hyperfine interaction through the Fermi contact term. 
The summation terms on the right-hand side extend 
over all the core s states. 

The zero-order one-electron wave function \pns satis
fies the equation 

(5C»«-€n.)^na = 0. (18) 

That is, in atomic units 

( ~ V 2 + F n -€n«)^W8 = 0 , (19) 

where Vns is the one-electron potential seen by an 
electron in the ns state in the Hartree-Fock approxi
mation. Therefore, 

(Vns— €ns) = ^ n s / ^ n s . 

Substituting this in Eq. (17), we get 

(20) 

/ VVns\ 

(-v2+ mns>N 

= J2 (en'S—ens)(i/n>s\fyns,N)lpn's 
n' s 

(21) 

If we now introduce the new function <£ns,jv, defined by 

A \l/ns <f>ns,N 
fyns,N~ -

where 
47r r 

-W,4>), (22) 

167T m 
A = yey'NWIZ— 

3 

a n d remember ing t h a t V 2 ( l / V ) = — 4?r5(r), E q . (21) 

reduces to 

d2(j)n A aUns (t>ns,N d Un 

dr2 

= E(«. 
n's 

2irrz 2irr2 dr uns dr2 

's— €ns){\Unfs J <t>ns,N)Un's) 

+ AX\l/n>s(0)\f/ns(Q)Un>i (23) 

where we have used the notation 

*».= [*».to/r]Fo°(0,0). 
Because of the first term on the right-hand side, 

Eq. (23) is an integrodifTerential equation and must be 
solved self-consistently. This term represents the in
fluence of Pauli principle on the perturbed core states. 

After determining 5\f/ns,N by solving Eq. (23), one 
can get the second-order energy JE6JV(2) using Eq. (13). 
Thus, substituting for the determinantal function 8^?N 
in terms of the one-electron functions 8\l/ns,N and using 
Eq. (14) for 3CE) we get 

EeN^ -? ( / ^val(l)^n*,2v(l)^val(2)^ns(2) 

X—dndr2 
ri2 nf J 

^val(l)^ns(l)^val(2)^n'S(2) 

X dTldT2 I lpn>sfyns,NdT f . (24) 

From this equation the correction ac to the hyperfine 
constant a from core polarization is obtained by the 
equation 

ac=EeNw/IJ2Th. (25) 

In solids and molecules, J is equal to the total spin S; 
whereas, for atoms, J is the total angular momentum 
of the valence electrons. 

III. RESULTS FOR LITHIUM ATOM ls22j> 
AND ls22s STATES 

For the lithium atom ls22p ( / = § ) state Eq. (23) 
for 0is,iv takes the form 

dfyi 

dr2 2wr* 
-Uu 

19 A. Dalgarno, Proc. Roy. Soc. (London) A251, 282 (1959). 

A duu 4>IS,N d2u\s 

+ 
2-KY2 dr Uu dr2 

= 4 |^i.(0) |««i.. (26) 
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To illustrate the nature of the solution of Eq. (26), we 
first assume a hydrogenic form for uu for which an 
exact solution of Eq. (23) can be obtained. The Coulson-
Duncanson functions20 represent such a choice. 

Th •= ( —) e~zr> fovM —) re-Z'cosO (27) 

and 
s = 2 . 6 9 , £=0.525. 

The solution of Eq. (21) is then found to be21 

(t>u,N =—(2s \nr+2z2r)uls(r). 
4TT 

(28) 

To find a solution 8\pu,N- which satisfies Eq. (5), we 
use the Schmidt orthogonalization procedure and 
obtain from Eqs. (22) and (28) 

where 

tyu,ir = —ZFL-(4'L\Fla\fu)'}l,u 
4TT 

1 
(29) 

-+2slnH-2sV. 

From Eq. (14), the exchange perturbation 3C# due to 
the 2p0 electron is given by 

^[1 r 
hs(r)Lr2 J0 

u2p(r) r 1 
3Q,E= —| — / u2v(s)uu(s)sds 

3ui, 

+r / U2p(s)uis(s)—ds . 
Jr S2 J 

Hence, from Eqs. (24) and (30) it follows that 

EeN(2) = — %B\ / u2p(r)5uis,N(r)dr 

x i - r 

(30) 

U-
+r / uls(s)u2 

1 "I 
p(s)—ds 

s2 J 
(3D 

where 

and 

A e2 4 yNy eh
2Iz 

B^—X-
4w do 3 a0

3 

4x 

A 
(32) 

For the Coulson-Duncanson functions using Eqs. (27), 

20 C. Coulson and W. E. Duncanson, Proc. Roy. Soc. 
(Edinburgh) 62, 37 (1944). 

21 C. Schwartz, Ann. Phys. (N. Y.) 6, 156 (1959). 

(28), and (31), and performing the necessary integra
tions, we get 

EeN™ 
32 r 

= B?2?\ 

9 L 

147s2 15 2732 

4(s+£) 8 8(s+£) 6 8(z+& 

21sln(s+£> 48s ln2 21s Ins 1 
(33) 

2(«+07 (»+£)7 2(s+£)7-

Substituting the values of s and J, one gets 

EeN™= - 0 . 0540£ . (34) 

From Eqs. (25) and (32), remembering / = / = § , it 
then follows that 

4/ii\rjU0£ei\r(2) 

0c= = - 5 . 2 4 Mc/sec, (35) 
3aQ

zIJ(2irh)B 

where ^N—JNI^ is the magnetic moment of the Li7 

nucleus and /*0 is the Bohr magneton. 
Since Uu(r) involves a single exponential for the 

Coulson-Duncanson function, one can obtain an exact 
analytic solution for the perturbation equation (16) 
for the EP method, with dipw and 3Qx replaced by bpiE 
and 3C#, respectively. 

Wi. -£) 
{ 

?e-zr \3(z+g)*ri(Titr 

(*+*)' 4? 
3 (*+{)« 9(z+£)3 

+1 + 
4 f 2? 

l e - 2 { r + r 3(z+£)4 

8|» 

9(z+£)3 51(z+$)*l 75e-2«r 

+• k*H-4^2 4 | •T- 4r 

2\e^-®T 75s /-tr2*' /•e<*-*>r 

-dr+ASz / dr 
r 2 J 

28/s3\1/222£5e~*Y 1 1 \ 
( - ) ( r + - l n r . 

3 \ 7 r / ( S + £ ) 7 \ S 2SV/ 

(36) 

Substituting &fru,E from Eq. (36) into Eq. (12), one 
obtains, after some manipulation, exactly the same 
expression for EeN

{2) as in Eq. (33). 
The value of ac in Eq. (35) is about one-half of 

Goodings'4 calculated value (—10.7 Mc/sec) by the 
SP method and is in somewhat better agreement with 
Cohen, Goodings, and Heine's5 value (—8.5 Mc/sec) 
by the EP method. However, one does not expect very 
good agreement with these earlier results because the 
single-exponential hydrogen functions are not good 
approximations to the Hartree-Fock wave functions.22 

To get a result by the M P method which could be 
properly compared in terms of accuracy with Cohen, 

22 Per-Olov Lowdin and K. Appel, Phys. Rev. 103, 1746 (1956). 
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U , s »-20i 

FIG. 1. Plot of unperturbed (uis) 
wave function and first-order per
turbation 8UIS,N as function of r 
for lithium atom ls22p configura
tion. 
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Goodings, and Heine's EP calculation and Goodings' 
SP calculation, we next solved Eq. (23) using Hartree-
Fock wave functions. The solution has now to be ob
tained by numerical integration of Eq. (23). In Fig. 1, 
the function 8uutN [denned in Eq. (32)] is plotted, 
together with Goodings' Hartree-Fock wave function20 

uu, which was employed in our calculations. The 
function duu)N resembles a 2s type function, in that, 
it has a node, but d\pis,N= (A/4nr)(8uuttf/r) goes to 
negative infinity at the origin. 

Using Eq. (31), together with Goodings' HF wave 
functions uu, u2p, and duutN of Fig. 1, it follows that 

£e* (2)=-pK0.137). (37) 

From Eq. (25) this leads to 

^ = - 8 . 9 M c / s e c . (38) 

This value compares very favorably with Cohen, 
Goodings, and Heine's EP value (Table I). This is 
satisfying in light of our Eqs. (12) and (13) and our 
earlier demonstration that EP and MP methods lead 

to identical results whenever exact solutions of Eqs. (9) 
and (10) are obtainable. 

Both ours and Cohen, Goodings, and Heine's values 
for ac are in slight disagreement with Goodings' value 
(Table I) obtained by the SP method. However, no 
measured value of ac is available, so it is rather difficult 
to assess the importance of this small disagreement 
between the values obtained by MP (and EP) and SP 
methods. 

The feasibility and accuracy of the MP method has 
now been demonstrated by its favorable comparison 
with the results of the EP method for the lithium atom 
ls22p state. We would next like to show the flexibility 
of the MP method by a consideration of core polari
zation effects for the ls22s state of lithium atom. The 
perturbation equation to be solved to get Ityu.N (or 
0i8,iv) in this case is exactly the same as in Eq. (26) 
except that u\s may be different from its value for the 
Wlp state. Available tables23 of uu for \s22s and \s22p 
states show that there is only a very slight difference 
between the values of uu in the two cases. One could 

TABLE I. List of contributions to hyperfine constants in Mc/sec for lithium atom l,s22.y and ls22p states. 

Goodings 
Cohen, Goodings, 

and Heinea 

This paper 
Experimental 

Core 
polarization 

106 
86.74 

83.76 

ls*2s 
Direct 2s 

contribution 

284 
286.26 

284 

a The direct 2s contribution is taken from Table I of Ref. 5. 

Total 

390 
373.0 

367.76 
401.786 

Core 
polarization 

-10 .7 
- 8 . 5 

- 8 . 9 

ls*2p 
Direct 2p 

contribution 

0 
0 

0 

Total 

-10 .7 
- 8 . 5 

- 8 . 9 

23 D. A. Goodings, Ph.D. thesis, Cambridge University, Cambridge, England, 1961 (unpublished), 
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therefore use the same <I>U,N for both ls22p and ls22s 
states. If using this approximation we find good agree
ment with results obtained by Cohen, Goodings, and 
Heine's EP calculation (which is not subject to the same 
approximation), we can indeed justify our claim about 
the flexibility of the M P method. For heavier atoms, the 
alteration in core wave functions uns for different 
atomic configurations would be even less than for 
lithium; and so the flexibility approximation will be 
more justified. 

The second-order energy expression EeN
{2) for the 

lithium atom ls22s state is then given by 

EeN™ = -2B\ f u2s{r)buu,N(r) 

X - / Uis(s)u2s(s)ds 

+ I Uu(s)u2s(s)-ds \dr\ . (39) 

On evaluating the integrals in Eq. (39), one gets 
EeN(2) = 2B (0.1434). The hyperfine constant is therefore 

ac= 83.76 Mc/sec. (40) 

The comparison of this value with Cohen, Goodings, 
and Heine's and Goodings' values (Table I) is very 
satisfying. 

IV. CORE CONTRIBUTION TO KNIGHT 
SHIFT IN LITHIUM METAL 

As another important application of the M P method, 
we shall consider the magnetic field produced at the 
Li7 nucleus in lithium metal as a result of the exchange 
polarization of the core Is electrons when the con
duction electrons are polarized by the external magnetic 
field. The usual expression for the Knight shift due to 
the conduction electrons is given by24 

AH 8TT 
— = - X p ( | ^ ( 0 ) | 2 ) a v , (41) 
H 3 

where Xv is the spin susceptibility per atom, and 
( | ^ ( 0 ) | 2 ) a v is the average electron density at the 
nucleus from electrons at the Fermi surface. Equation 
(41) can be interpreted in the following way: Of the 
conduction electrons near the Fermi surface, a fraction 
( i + XpH/2fjLo) have their spins parallel to the field, and 
a fraction {^—XvH/2\x^) have their spins antiparallel 
to the field. When these electrons interact with the 
nuclear moment through the interaction term 3CJV, we 
get the effective field AH in Eq. (41) out of the difference 
in populations in the parallel and antiparallel spin 

24 W. D. Knight, in Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2. 

states. This population difference between the parallel 
and antiparallel conduction electron states also leads 
to an exchange polarization potential to the core 
electrons, given by 

XPH V*(l) r 1 
WE = / M2)-^oore(2)dT2. (42) 

MO ^ c o r e ( l ) J r12 

I t is this potential #C.# which enables the core electrons 
to produce an additional field at the nucleus. 

Since 3CE is now a weaker perturbation than in Eq. 
(14) by a factor XJH/IXQ, the perturbation methods EP 
and M P are more justified than in atoms. Also, it is 
clear from Eq. (42) that terms of the order 5Cj?25Civ, 
3CE*3£N, • • •, would lead to contributions to the Knight 
shift which are proportional, respectively, to the first, 
second, and higher powers of the field. However, there 
is little current evidence for such contributions to the 
Knight shifts in metals. 

To calculate the contribution to the Knight shift 
from the core Is electrons by the MP method, we then 
proceed in the same manner as in Sec. I l l to calculate 
EeN

{2) as given by Eq. (13). For the perturbed core 
wave function, the function bu\StN (Fig. 1) for the 
atomic lithium \s22p state was used. This is again an 
approximation because there may be a small difference 
between the wave functions Uu for the metal, and for 
the atomic \s22p state. However, our experience with 
the lithium atom \s22s state in Sec. I l l indicates that 
the error due to this approximation has little effect on 
EeN^- We would also like to point out that this error 
would be expected to be smaller for the metal than for 
the \s22s atomic state because the conduction electron 
wave functions appear to have predominantly p 
character at the Fermi surface.17 

Making use of Eqs. (13), (25), and (42), and re
membering that we have to average over the Fermi 
surface in calculating Knight shifts, we get 

AH Sw 2 / /"•• 
— = — xv—{ / iMi )Vi . .* ( i ) 
H 3 AF\Jo 

X^kT*{2)^u{2)—dridrS , (43) 
7*12 ' Fe rmi surface 

where \//kF is the wave function for a conduction electron 
at the Fermi surface, rs is the radius of the Wigner-
Seitz sphere, and AF is the area of the Fermi surface. 
Equation (43) can be evaluated using available wave 
functions \pkF for lithium metal. Of the published wave 
functions for lithium, those which are available in a 
readily usable form are the recent ones by Kohn and 
Callaway.17 

eik.T 

^k= |>o (r)+ikui (r)Pi (cos0*r) 
(i\01/2 

+k2(u2 (r)P2(cosdkr)+(t> ( r ) ) ] . (44) 
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The potential used in obtaining these results was an 
empirical potential which is expected to be more ac
curate than a calculated potential based on some model. 
In Eq. (44), 6kr is the angle between a radius vector r 
and wave vector k. The functions UQ(T), <j>(r), Ux(r), 
and u2(r) were given in tabulated form and N is a 
normalization factor calculated up to kF

2 term (where 
kF is the Fermi momentum in the spherical Fermi 
surface approximation). 

iV=47r(l+2.79333;b2). (45) 

Since the Fermi surface in lithium approximates a 
sphere quite closely, we can take the magnitude of kF 

in all directions as the same. The details of the calcu
lations for evaluating the integral in Eq. (43) are given 
in the Appendix. I t is shown there that including up to 
terms of order kF

2 [Eq. (A4)] 

\l/kF(r) = As(kFyr)Po(cosdkr)+Ap(kF,r)Pi(cosdkr) 

+Ad(kF,r)P2(co$9kr), 

As(kF,r) = jo(kF,r)u0(r) — kFji(kF,r)ui(r) 
(47r)1/2L 

2( jo(kF,r)<t>(r)- j2(kF,r)u2(r) 

2.79333 

Ap(kF,r)~- 3^oii 

01/2L 

-jo(kF,r)u0(r) 

+kF(j0Ui—2j2Ui) 

• ) ] • 

(46) 

+ kFH 1.2j1U2+Sj1(j)—l.SjzU2 

3(2.79333) 
-U0J1J J , 

Ad(k *0 = [ 
(47r)1/2L 

+ kF
2( joU2 

-Sj2Uo+kF(3jdUi~2j1u1) 

10 18 
7*2̂ 2— 5y20H 7*4̂ 2 

7 7 

5(2.79333) 
-J2U0) 

where jn(kFjr) is the spherical Bessel function of the 
order n. Using Eq. (46), it is shown in the Appendix 

[Eq. (A15)], that one obtains after some manipulation 

AH SwXp 1 

H 3 2TT. 
• / ^ l « , t f ( f l ) ^ l « 
J 

(rt) 

X (4x)3-
As(kF,ri)As*(kF,r2) 

+ 3 ( — J Ap{kF,n)Ap*{kF,r%>—2 

/ 4 x \ 3 

O r<z\ 
Ad{kF,ri)Ad*(kFs2)— k 2 ^ ! 2 ^ . (47) 

r>3J 

The contributions to AH/H from the three terms in 
Eq. (47) involving As, Ap, and Ad refer, respectively, 
to the s, p, and d parts of the conduction electron wave 
function at the Fermi surface. These were evaluated 
by numerical integration and are listed in Table I I . 
I t can be seen that (AH/H)cp is almost equal to 
(AH/H)C8 but opposite in sign. In contrast, (AH/H)cd 

is about a factor of 25 smaller than both (AH/H)cp 

and (AH/H)CS. This leads us to expect that the con
tributions to the core polarization from / and higher 
angular momentum parts of the conduction electron 
wave function would be negligible. Unfortunately, it 
is not possible to test this point using Callaway and 
Kohn's wave function, because they did not give higher 
angular momentum components beyond d. The value 
of the total core contribution, (AH/H)C in units of 
(647.5 Xp), namely —0.00544, is to be compared with 
the value of 0.10280 in the same units, for (AH/H)direct 
that one gets using Kohn and Callaway's wave functions 
and Eq. (41). So we find that the core polarization 
contributes about —5.3% correction to the Knight 
shift. Also it is to be noted that, while the s character 
of the conduction electron wave function is alone im
portant, for the direct contribution to the Knight shift 
as given by Eq. (41), the core polarization depends 
sensitively on the 5 and p parts of the wave function, 
since there is a near cancellation between (AH/H)C8 

and (AH/H)cp. I t is therefore imperative to know 
accurately the relative amounts of s and p characters 
in the wave functions for other metals, since the core-
polarization contribution may be a more significant 
fraction of the direct contribution. This point has also 
been noted by Cohen, Goodings, and Heine.5 These 
authors assumed that the conduction electron wave 
function can be well approximated by a combination 
of 2s and 2p atomic functions. In such a case, the core 
polarization can be calculated by taking a weighted 
combination of the core polarizations for atomic ls22s 
and ls22p configurations. However, in Figs. 2 and 3, 
we have compared As and Ap with the 2s and 2p 
atomic wave functions, respectively, obtained by 
Goodings.4 I t is seen that, while there is a reasonable 
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FIG. 2. Comparison of the s part 
of the conduction electron wave 
function (at Fermi surface) with 
Goodings' 2s wave function («2«) 
for lithium atom ls22p configura
tion. 

similarity in shapes between the metallic and atomic 
wave functions, the correspondence is far from exact. 
To make a quantitative application of the EP method 
comparable to our MP calculations, one would have to 
solve two equations of the type of Eq. (9) using Eq. 
(42) for 3CE and then calculate (AH/H)C using Eq. 
(12). With the MP method, however, because of the 
flexibility in using 5\[/ls,N as long as the core wave 
functions do not vary substantially, we did not have 
to solve any new differential equations to obtain 
(AH/H)C. This is an illustration of the computational 
advantage of the MP method. 

In our numerical calculations leading to the results 
in Table II, we had to make use of the expressions in 

TABLE II. List of contributions to Knight shift in lithium metal. 

Contributions* to AH/H Value 

Core-polarization s part, (AH/H)CS 0.02355 
Core-polarization p part, (AH/H)CP -0.02813 
Core-polarization d part, {AH/H)cd -0.00085 
Total core polarization (AH/H)C -0.00544 
Direct contribution (AH/H)diiect 0.10280 
Grand total (AH/H)totai 0.09736 
Experiment6 0.101 

a The tabulated numbers are in units of ao~3 (atomic units). To correct 
to the usual dimensionless manner ( %) that Knight shift data are obtained, 
multiply by 647.5 XP, where XP is the spin susceptibility per gram. 

b Calculated using Kohn and Callaway's wave function (Ref. 17). 
c Taken from Table IV, Ref. 24. 

Eq. (46) correct to kF
2. This was necessary because of 

the form of Eq. (44) in which Callaway and Kohn's 

wave function was available. However, Eq. (47) can 
be used for any general wave function (such as orthogo-
nalized plane wave and augmented plane wave), since 
one can obtain As, Ap, and Ad by expanding the con
duction electron wave function in spherical harmonics. 

CONCLUSION 

As we mentioned at the outset, our motivation in 
developing the MP method was to find a procedure for 
investigating the contribution from exchange polari
zation to Knight shifts in metals and alloys. While the 
EP method as developed by Cohen, Goodings, and 
and Heine can, in principle, be applied in any situation, 
one would like to have a method that is computationally 
simpler and flexible enough to apply for a nucleus in a 
variety of environments. Our experience with lithium 
nucleus in the three situations discussed here leads us to 
believe that the MP method can be extended to give 
reliable results in other cases. The necessity for careful 
investigations of core polarizations is strongly felt at 
the present time, because a variety of Knight shift data 
in metals, alloys, and internal fields in ferromagnets, 
are now available; and it appears that direct contri
butions from conduction electrons cannot quantita
tively explain such data. 

We would like to conclude by making a few comments 
on the self-consistency problem in core-polarization 
calculations in general and specifically as pertinent to 
the MP method. In an atom containing an unpaired 
electron, the many-electron wave function has to be 
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FIG. 3. Comparison of the p part 
of the conduction electron wave 
function (at Fermi surface) with 
Goodings' 2p wave function (u2p) 
for lithium atom ls22p configura
tion. 
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an eigenfunction of S2. As has been pointed out by a 
number of authors, in a correct application of the 
Hartree-Fock method, this condition must be built in 
as a constraint. This is the case with the PSP method. 
The SP method, however, does not have this constraint, 
and the results from both SP or SPP methods are 
therefore somewhat suspect. Heine has pointed out 
that it is the self-consistency procedure in the SP 
method which is responsible for its dangers because it 
leads to an uncertain admixture of correlation and 
exchange effects and may in fact overemphasize the 
correlation unduly. The EP method, which considers 
the exchange polarization as a perturbation and has 
no self-consistency built in, is free from this danger 
although it is evidently less accurate than PSP. In the 
MP method, however, the perturbed state is not an 
eigenfunction of S2 because of the nature of 3Civ; hence, 
there is no condition of constraint regarding the total 
spin. Self-consistency can therefore be used in the MP 
method without any fear of spurious contributions 
from correlation. However, our aim was to extend this 
method to metals where self-consistency is rather 
difficult to apply even for restricted Hartree-Fock 
calculations. We have therefore not explored the effects 
of self-consistency (Dalgarnos' method I) here. 
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APPENDIX 

From Eq. (24), the second-order change in energy 
due to the exchange polarization of the core electrons 
by the conduction electrons at the Fermi surface is 

EeN™=-
47r&i,2Vo 

X**,*(2)*i.(2)—dndrS , (Al) 
7*12 ' Fe rmi surface 

where r8 is the radius of the Wigner, Seitz sphere=3.21 
flo, kF is the Fermi momentum=0.59788/#o, and 

fe> = [«oM+iftirf*i(r)Pi(0*r) 
(i\01/2 

+W(ih(r)Ps(fikr)+<t>(r))lf (A2) 

Skr being the angle between k^ and r, and N the nor
malization factor, 4^(1+2.79333^/) and for abbrevia
tion we denote Pi(cos6kr) by Puekr) where 6kr is 
the angle between kP and r. On expanding eik*"r and 

N, and keeping terms up to kF
2, \j/kp can be written as 

+Ad(kF,r)P2(6kr), (A3) 
where 

(47r)1/2L 

+kF
2(jo(kF,r)(l>(r)-J2(kFjr)u2(r) 

2.79333 

)]• -jo(kF,r)uo(r) 
2 

Ap(kF,r)= 3jiUQ+kp(jdUi—2ji!Ui) 
(47r)1/2L 

+kF
2( 1.2j1U2+3JKt>-l.SjzU2 

- f (2.79333>oii)l, 

1 r 
Ad(kFir)= —5J2m+kF(3jzUi—2jiUi) 

(4TT)1/2L 

(A4) 

/ 10 18 u 
+ kFH joU2 J2U2—Sj2(j)-\ jtU2 

\ 7 7 

+f(2.79333>oi2JJ, 

where jn(kF,r) is the spherical Bessel function of order 
n. Using Eqs. (A3) and (A4), Eq. (Al) takes the form 

1 r 1 
EeN™ = / ^i . ,y(f i )^i . ( f2)—{lAs(kF ,n) 

2ir J r 12 

+Ap(kF>r1)P1(0kl)+Ad(kF,r1)P2(eki)'] 

XtAs*(kF,r2)+Ap*(kF)r2)Pi(ek2) 

+Ad*(kF,r2)P2(Ph2)']}dTidT2 sin20kFd6kFd<j)kF, (A5) 

0*1 representing the angle between kF and ri and dk2 the 
angle between k^ and r2. We perform the integration 
over the spherical Fermi surface first, and then inte
grate out the angular parts of dn and dr*. 

Since the directions of ri and r2 are arbitrary, let ri 
be directed along kz for convenience. Using the addition 
theorem for spherical harmonics 

4?r 2 
P*(0M) = — L r2»'(W*i)r a~(0u,*i2), 

5 w=—2 

47T 1 

Pl(dk2)=— Z Fi**(fei,**i)Fi«(^l2,*12), 
3 »—-i 

(A6) 
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In order to perform the angular integration involved 
in Eq. (A9) the following relationships will be used: 

1 1 r<1 i 
—=4*rL E F ^ ( M i ) 
fi2 «-° ( 2 H - l ) r > w * — * 

XF,~(M») , (A10) 
FIG. 4. Relative , 

orientations of k, ri, ^ ,„ s ™ * TT * /y4 N „ ,„ * 
y andr2 . P i ( * u ) = — E F i r f ( M i ) ^ " ( « i A ) , 
y 3 m—1 

P J ( * H ) = — •£ F 2 ™ * ( ^ i ) F 2 ™ ( ^ 2 ) , 
5 m=—2 

(AH) 

where (All) again follows from the spherical harmonic 
X addition theorem. Thus, 

r 1 (4TT)2 oo 1 r<
1 

one can evaluate the following integrals over the Fermi J ~Pl (#12)^ A = — E 
surface: 

4TT /• 

3 J 
Pi(flki) E Fi»* (0^,0*0 F i * ^ , ^ ) ^ * 

4?r 
= —Pi(0i2)fi«o, (A7) 

3 

47T /• 

r u 3 i=o(2/+l)^>!+1 

X E fF 1 » ' , («^ i )F ! " ' (M ! ) 

m'=*-l J 

m=—1 

4ir \ 2 »•< 
X3. (A12) ) E J V * ( W M ) I V , ( 0 U , * U ) < & * 

m=—2 

4TT 

= —P2(d12)8mQ, (A8) 

r>' 

4TT\2 r<2 

• P 2 ( M ^ i * 2 2 = ( — ) — X S , (A13) 

fps(fikl)Pi(eki)dak=o, i^j. 

Equation (A5) then reduces to 

2ir J r12L 

47T 

Xi4j*(*F,f2)+— Ap(kF)r1)Ap^(kFjr2)P1(d12) 
3 

4?r -1 
+—ild(*F,ri)i4d*(fty,r2)P2(^i2) ^ r 2 . (A9) 

(e12)d^1dn2= (4TT)2—. 
^12 r> 

(A14) 

/ —P2(̂ i2)(H2i<K22=f — ) 

The final expression for EeN
{2) is then 

EeN{2)= / ^ l . , Jv(f l )^l«(^ 2 ) 

2W 

X{(47r)M5(^F/1)^^(^F,r2)(lA>) 

+3(47r/3)M^(^F/2)^^(^F/ l)(r<A>2) 

+5(4V5)Md(^^r1)^^(^F/2)(r<2A>3)} 

Xr2
2dr2r1

2dr2, (A15) 

which involves only radial integrations over ri and r2. 


